
Exercise	

SAOM	

Advanced	Social	Network	Analysis	

	

	

	

	

Background	

In	this	exercise,	I	want	you	to	use	some	of	the	data	I	presented	in	the	first	session.	The	data	is	about	a	
friendship	network	in	a	Dutch	school	class.	The	data	were	collected	between	September	2003	and	June	
2004.		

There	 are	 26	 students	 who	 were	 followed	 over	 their	 first	 year	 at	 secondary	 school	 during	 which	
friendship	networks	as	well	as	other	data	were	assessed	at	four	time	points	at	intervals	of	three	months.	
There	were	17	girls	and	9	boys	in	the	class,	aged	11-13	at	the	beginning	of	the	school	year.	Network	data	
were	 assessed	 by	 asking	 students	 to	 indicate	 up	 to	 twelve	 classmates	 which	 they	 considered	 good	
friends.	

Ultimately,	 I	 want	 you	 to	 run	 a	 network	 dynamics	 (only)	 model	 that	 replicates	Model	 0	 (Table	 1)	 in	
Snijders	et	al.	(2010).	The	question	is	what	drives	network	change	in	this	school	class?	

	

More	information	

http://www.stats.ox.ac.uk/~snijders/siena/tutorial2010_data.htm	

	

Data	

http://www.stats.ox.ac.uk/~snijders/siena/klas12b.zip	

You	can	find	the	data	in	the	data	folder	that	I	prepared	for	this	workshop.	

	 	

Exercise	1	

- Load	 the	network	datasets	klas12b-net-1.dat, klas12b-net-2.dat, klas12b-
net-3.dat and klas12b-net-4.dat from	the	data	folder.

 read.table(...)	is	a	good	start
- Transform	the	data.frame	objects	you	just	generated	in	matrix	objects	and	save	these	matrices	

as net1, net2, net3 and net4.		
 Use	the	command	as.matrix(...)	

- The	networks	are	coded	as	follows:	Friendship:	0	=	no,	1	=	yes,	9	=	missing,	10	=	not	a	member	
of	 the	 classroom	 (structural	 zero).	 In	 RSiena	 network	 values	 can	 only	 be	 0,1,10,11	 (structural	
ones).	

- Therefore,	you	need	to	deal	with	the	missing	code	9.	Here,	it	makes	sense	to	set	it	to	“structural	
zero”.	

 	
a) You	can	subset	a	network	with	this	syntax:	net1[net1==9]	
b) You	can	assign	whatever	is	on	the	right	side	to	whatever	is	on	the	left	side	

or	an	arrow:		a <- 10	
- Therefore,	you	need	to	deal	with	the	missing	code	9.	Here,	it	makes	sense	to	set	it	to	“structural	

zero”.	
- Next,	 load	 some	 additional	 data	 saved	 in klas12b-demographics.The	 file	klas12b-

demographics.dat	contains	the	following	four	variables	saved	in	four	columns.	
§ Sex	(1	=	girl,	2	=	boy)	
§ Age	(years)	
§ Ethnicity	(1	=	Dutch,	2	=	other,	0	=	missing)	
§ Religion	(1	=	Christian,	2	=	non-religious,	3	=	non-Christian	religion,	0	=	missing)	

- Generate	a	new	object	sex.d	which	holds	the	first	column	of	the	data.frame	you	just	loaded.		
 You	can	select	the	first	column	of	a	data.frame	called	data	with	data[,1]	

- Lastly,	load	the	dyadic	covariate	saved	in	klas12-b-primary.dat.	This	file	contains	
variables	indicating	if	two	students	went	to	the	same	primary	school.	Save	this	data	as	a	matrix	
and	call	it	primary.d 		

§ Same	primary	school:	0	=	no,	1	=	yes.	
- Great,	if	you	made	it	so	far	and	have	some	time	left	try	to	plot	the	networks	represented	by	the	

matrices	net1, net2, net3, net4.	
 Use	gplot(...)to	plot	a	network	in	matrix	format	

	

	 	

Exercise	2	

- Before	you	can	run	a	RSiena	analyses,	you	need	to	create	a	sienaDependent	object	where	you	
declare	the	sequence	of	networks	(net1… net4)	as	dependent	variable.	Call	this	new	object	
friendship	

 Check	the	code	we	used	in	the	lab	session	for	the	syntax	you	need	to	use.	
 If	you	do	not	know	the	dimensions	of	the	networks	you	can	find	that	out	with	e.g.	
dim(net1)			

- We	want	to	use	sex.d	as	independent	variable.	Create	a	constant	covariate	(coCovar)	object	
for	sex.d	and	call	it	sex	

 Look-up	the	code	we	used	in	the	lab	session	to	do	similar	things.	
- We	also	want	to	use	primary.d	as	independent	variable.	Remember,	primary.d is	a	

matrix	(you	should	have	transformed	it	in	to	this	format).	Create	a	constant	dyadic	covariate	
(coDyadCovar)	object	for	primary.d	and	call	it	primary	

 The	syntax	to	do	this	is	very	similar	to	the	one	when	you	create	a	constant	covariate.	
- Great,	now	we	have	all	dependent	and	independent	variable	objects	that	we	need.	You	just	

need	to	put	it	all	together	and	create	a	sienaData	object	and	call	it	yourData.	
 Again,	check	out	the	code	we	used	in	the	lab.	You	just	need	to	add	all	dependent	and	
independent	variables	to	the	arguments	list.	

 The	command	you	need	to	use	is	sienaDataCreate	
- Finally,	create	a	sienaEffects	objet	from	this	sienaData	object	and	call	it	yourEff	

 The	simple	command	is	getEffects(…)

Exercise	3	

- We	are	nearly	there	to	run	a	model.	Everything	is	in	place.	
- Now,	 the	 only	 thing	 left	 to	 do	 is	 to	 specify	 the	model	 you	want	 to	 estimate.	 You	 do	 this	 by	

altering	 the	 yourEff	 object	 you	 just	 created.	 The	 best	 way	 to	 include	 an	 effect	 is	 using	
includeEffects(…)

- Okay,	we	want	to	replicate	model	0	in	table	1	of	Snijders	et	al.	(2010)
- There	are	a	bunch	of	network	effects	you	need	to	include.	The	short	names	for	these	effects	are:	

recip, transTrip, transTies, cycle3, inPopSqrt, outPopSqrt,
outActSqrt.

 You	can	include	all	of	these	effects	in	one	go.	See	how	we	did	this	in	the	lab	session.	
- Next,	include		egoX, altX, and sameX effects	for sex.	Remember,	egoX	just	models	

that	individuals	with	a	high	score	on	X	send	more	ties	and	altX	models	that	indivdiuals	with	a	
high	score	on	X	receive	more	ties.	And	sameX	models	that	ties	between	two	individuals	who	
have	the	same	value	on	X	are	more	likely	to	form/maintain	ties.	

 We	used	these	effects	already	in	the	lab	session.	Basically,	you	just	need	to	include	
them	in	the	args	list	of	inlcudeEffects(…)	and	specify	interaction1 =
“sex”

- Lastly,	let	us	include	a	simple	dyadic	covariate	effect	of	primary.	With	this	effect	we	want	to	
model	that	ties	might	be	more	likely	to	form/maintained	when	two	individuals	already	went	to	
the	same	primary	school	together.	We	did	not	use	such	an	effect	in	the	lab	session	before.	This	
is	the	relevant	syntax.	The	general	form	is	always	the	same.	You	just	need	to	know	the	short	
name	of	an	effect	(here:	X)	and	specify	it	further	with	interaction1	(and	sometimes	also	
interaction2).		
yourEff <- includeEffects(yourEff, X, interaction1 = "primary")

- Yeah!!	And	now…	run	the	model	
 yourAlgorithm <- sienaAlgorithmCreate(projname ='Exercise')
 yourAns <- siena07(yourAlgorithm, data = yourData, effects
= yourEff)

- Look	at	your	results	yourAns	and	be	excited	that	you	just	replicated	Snijders	et	al.	(2010)!	

Yeah	

